eXtended Hybridizable Discontinuous Galerkin with Heaviside Enrichment for Heat Bimaterial Problems

نویسندگان

  • Ceren Gürkan
  • Martin Kronbichler
  • Sonia Fernández-Méndez
چکیده

A novel strategy for the Hybridizable Discontinuous Galerkin (HDG) solution of heat bimaterial problems is proposed. It is based on eXtended Finite Element philosophy, together with a level set description of interfaces. Heaviside enrichment on cut elements and cut faces is used to represent discontinuities across the interface. A suitable weak form for the HDG local problem on cut elements is derived, accounting for the discontinuous enriched approximation, and weakly imposing continuity or jump conditions over the material interface. The computational mesh is not required to fit the interface, simplifying and reducing the cost of mesh generation and, in particular, avoiding continuous remeshing for evolving interfaces. Numerical experiments demonstrate that X-HDG keeps the accuracy of standard HDG methods in terms of optimal convergence and superconvergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

Hybridizable discontinuous Galerkin (HDG) method for Oseen flow

3 The hybridizable discontinuous Galerkin (HDG) formulation 3 3.1 HDG local problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 HDG global problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Local post-process of the velocity field . . . . . . . . . . . . . . . . . . . . 5 3.4 Assembly of the matrices . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

An Analysis of the Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems

The embedded discontinuous Galerkin methods are obtained from hybridizable discontinuous Galerkin methods by a simple change of the space of the hybrid unknown. In this paper, we consider embedded methods for second-order elliptic problems obtained from hybridizable discontinuous methods by changing the space of the hybrid unknown from discontinuous to continuous functions. This change results ...

متن کامل

A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations

In this paper, we present a Hybridizable Discontinuous Galerkin (HDG) method for the solution of the compressible Euler and Navier-Stokes equations. The method is devised by using the discontinuous Galerkin approximation with a special choice of the numerical fluxes and weakly imposing the continuity of the normal component of the numerical fluxes across the element interfaces. This allows the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2017